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Stochastic quantum mechanics is a quantum theory in which the basic limitations 
of real-world measuring instruments, due to their intrinsically quantum nature, 
are taken into account. Among other things this leads to a new operational 
definition of space-time, called quantum space-time. Fundamental to this ap- 
proach is the formulation of quantum mechanics over phase space rather than 
just over position or momentum space. A concept of extended particle is a 
natural outgrowth of this development. Gauge and internal symmetry have a 
natural place within the theory, and preliminary computations combining some 
old ideas due to Born with more recent ideas on symmetry breaking suggest that 
the theory could lead to a mass formula compatible with known data on the 
low-lying baryons. 

1. INTRODUCTION 

Classical physics is said to be deterministic because the equations 
which govern the evolution of a classical physical system typically uniquely 
determine the state of the system at all future times, once the state of the 
system has been precisely specified at some initial time. As long as one is 
willing to permit idealized measuring instruments (measuring rods for 
example, on which perfectly exact and sharp markings are engraved), then 
the determination of the future state of a system from an initially precise 
state is not a problem. However, any initial imprecision in the specification 
of the state of a classical system will result in (generally greater) future 
imprecision, and as is well known, perfectly precise measuring instruments 
do not exist in reality. So the result of a realistic measurement of a classical 
observable should in fact be a value of the observable together with a 
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probability distribution, characteristic of the measuring device used, specify- 
ing what readings one ought to expect. 

Quantum physics, in its conventional formulation, allows that certain 
pairs of observables may not be simultaneously prescribed or measured with 
arbitrary accuracy in accordance with Heisenberg's uncertainty principle. 
But as far as a single observable is concerned, the usual approach permits 
arbitrarily precise specification of its value. One flaw with this approach is 
that real instruments are constructed of quantum mechanical and not 
classical mechanical point particles, and therefore in the limit of the 
ultimate instrument, namely, a quantum mechanical particle itself, one 
should not expect to recover arbitrarily high precision. Despite this draw- 
back, however, the imprecisions of a quantum instrument (for example, a 
particle used as a position marker) are not arbitrary but must be consistent 
with the uncertainty principle (so that a quantum particle used to measure 
position and velocity would possess intrinsic but well-defined limitations). 
The description of quantum mechanics which takes into account these 
fundamental difficulties has been achieved and has become known as 
stochastic quantum mechanics (for a review of the entire program see 
Prugove~ki, 1984). 

In this paper we give a brief review of the basic notions of the theory of 
stochastic quantum mechanics together with an account of some recent 
developments. Section 2 concerns the covariance properties of the stochastic 
phase space concept which underlies the entire approach. The reciprocity 
principle of Born and its role within the theory is outlined in Section 3. The 
introduction of gauge freedom via the canonical commutation relations is 
described in Section 4, and in Section 5 we give some preliminary calcula- 
tions leading to a mass formula which agrees well with experiment in the 
case of tow-lying baryons. 

2. STOCHASTIC PHASE SPACE 

Suppose a simultaneous measurement of position Q and momentum P 
of a particle is to be carried out. The outcome of such a measurement will 
not be simply the coordinates q of position and p of momentum, but rather 
q and p together with confidence functions Xq(X) and ~p(k) representing 
probability densities that Q, P will have values x, k respectively such that the 
uncertainties of Q and P (equalling the standard deviations of Xq and ~(p, 
respectively) obey the uncertainty principle. In the optimal case, the 
"spreads" of Xq and ~p will be in inverse proportion. In the limit of 
perfectly sharp position measurements the confidence function Xq(X) goes 
over into a delta function 6 ( x - q )  located at q, whereas 5(p(k) becomes a 
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constant density. And in the sharp momentum limit ~p(k) becomes 3 ( k - p )  
and Xq(X) a uniform distribution. 

Since the uncertainty relations (which serve to determine the limits of 
accuracy attainable by quantum instruments) hold between conjugate ob- 
servables, it is natural to formulate quantum mechanics over the space of 
such pairs of conjugate variables, namely, phase space. The nonrelativistic 
situation (Prugove~ki, 1976; Ali and Prugove~ki, 1977, 1983a) is as follows. 

Consider a single spinless particle with fixed-time phase space 

F =  {(q,p)} = R  6 (1) 

and Hilbert space over this phase space 

L2(F)= {q~" frlq~(q,p)12dqdp<~} (2) 

A realization of the canonical commutation relations 

[Qi, pj] =ihSij, [Q',QJ] =O=[Pi ,  P j] (3) 

is given by 

Q,~ = qi~ + ih O~ P'~/= - ih 0~ (4) 
tg p i ' tg q i 

The wave functions may be made time dependent according to the free 
evolution 

i 
~(q ,p , t )=  [exp(-~Hot)q~](q,p ) (5) 

where H 0 -- (1 /2m)P 2 is the free Hamiltonian. Thus we have a unitary ray 
representation of the Galilei group given by 

i [U(b ,a , v ,R )qJ] (q ,p , t )=exp{ -~[mv . (q -a ) -  1 2 (,-b)]} 
• r  - b ) } ,  R - t ( p  - my) ,  t - b)  

(6) 

where (b, a, v, R) represents an element of the Galilei group corresponding 
to time translation by b, space translation by a, a boost by v, and a rotation 
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in space by R. Note that 

U(O,a,O,I)=exp(-ha'P ) (7a) 

U(O,O,v,I)=exP( hmV'Q ) (7b) 

so that P and Q, respectively, generate space translations and boosts (or 
momentum translations). 

Although the representation (6) is reducible, it can be related to the 
usual configuration representation as follows. Given a rotationally invariant 
~(X) E L2(R 3) with I1~11 z = (21rh) -3,  let 

I )1 / ~q,p(X) = U (0,q, l p ,  I ~ ( x ) = e x p { ~ p . ( x - q ) ) , ( x - q )  (8) 
config. 

L space 

where Uconr~, .space means U restricted to functions of the first variable only. 
Now define 

W~' + (x) ~ ~,(q,p) = fRfi~,p(X) ~(x ) dx (9) 

which maps L2(• 3) = {sharp configuration space wave functions} isometri- 
cally into LZ(F)= {phase space wave functions} and intertwines the repre- 
sentations U on L2(F) and fconfig ' space on Lz(R3). Thus U restricted to 
W~L2(R3)c L2(F) is unitarily equivalent to  Uconfig" space" The correspon- 
dence +(x) to ~b(q,p) via W~ also has the so-called marginality properties: 

fR 31 q' (q' p) [2 dp = fn3x ~ (x)l q, (x)12 dx (10a) 

fR3l~(q,p) 12dq = fa~:[(k)l~(k)I  2dk (lOb) 

where 

X~(X) = (2~rh)31~(x-q)12 

~p(k) = (2~rh)31~(k-p)[2 

and - denotes Fourier transform. 
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The physical interpretation is this. If [ ~, (x) [ 2 is the probability density 
that a point particle be detected at x using a perfectly accurate instrument, 
and if a realistic apparatus produces a density X~(x)= x ~ ( x - q )  for reading 
q when a particle is present at x, then (10a) gives the probability of a 
response q when a point particle in a state ~ is present. Therefore ]~k (q,P) [2 
becomes a probability density on stochastic phase space 

r,-- {((q, 
The relativistic construction is carried out analogously by replacing the 

phase space representation of the Galilei group with that of the Poincar6 
group (see Prugove~ki, 1978a, b; All and Prugove~ki, 1983b). 

Instead of the canonical commutation relations (3) we consider the 
relativistic canonical commutation relations (RCCR's): 

[Q",P"l=- ihg "~, [Q~',Q"]=o=[P~',P "1 (11) 

where ( g ~ ' ~ ) = d i a g ( 1 , - 1 , - 1 , - 1 )  with Greek indices ranging through 
0,1,2,3. In analogy to ~(k) we now have %(k)~  L2(V~.da"), the func- 
tions on the future ( + )  or past ( - )  mass-m shell V • = fk" k~'k = m2c2~ 

" t �9 ,u J 

square integrable with respect to the measure df~,.(k)= 3(k 2 -  rn2c2)d4k 
= d k / k  ~ The function ~/ is normalized to I1~112= 2mc(2~rh) -3, and again 
by analogy with ~q.p one has %q.p which is ~ boosted to 4-velocity (1/m)p 
and translated in space time by q. One has a mapping 

W,I: L2(V,,• ,dam) ~ L2(Ig~m,dE.~ ) 

; k ( k ) ~ 6 ( q , p ) =  fvd~'~,p(k)6(k)da.,(k ) (12) 

where Y.~ = o x V.~ 

o = spacelike hyperplane of space time 

and dR,.  = 2 sgn( pO)p~, do,(q) dam(p), the measure on Z~ which reduces 
in the special case of o -- {q~ = const.} to dqdp. The image L2(I~,,,..)• of 
L2(V. ~, ) by W, is an irreducible subspace of 2 • L (Y.") supporting a Poincar6 
representation unitarily equivalent to the usual momentum space represen- 
tation. 

One also has a conserved (divj. = 0), covariant and bonafide probabil- 
ity current 

j•(q) = 2sgn(p~ I d a " ( p )  (13) 
m 

when ~/ is real valued. 
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Finally, it should be noted that all of the physics resides in the 
relativistic free propagator 

Kn( q', p'; q, p) = (i7o, p,l~lq,p)v~ (14) 

because 

K~(q,p;  q ' ,p ' )=Kn(q ' ,p ' ,q ,p )  (15a) 

K,(q',p'; q,p)=s K,(q',p'; q" ,p")Kn(q" ,p ' ;  q ,p )dZ . , (q" ,p ' )  

(15b) 

and because in the framework of stochastic quantum mechanics, (2~rh) 3 • 
K, 7 (q",  p";  q', p')12 represents the probability that an extended quantum 

mechanical particle (characterized by ~) located at (q',p') will reach 
(q", p"). 

3. RECIPROCITY PRINCIPLE AND SUBSEQUENT 
DEVELOPMENTS 

Motivated by symmetry arguments in quantum theory, Born (1938) 
was led to consider the possibility that the usual Minkowski metric on 
space-time should be generalized to permit a velocity dependence. In fact he 
suggested that the line element 

= dC  + dp" dp. (16) 

which is symmetrical in q and p would be a more appropriate one over 
small distances where quantum effects are dominant. 

Shortly thereafter, Born (1939) and Land6 (1939), in seeking to avoid 
the divergences of quantum field theory associated with point particles, 
postulated a symmetric counterpart to the Klein-Gordon equation, 

h2 0 2 ) 
- -  - -  m2c 2 q, = 0 (17) 

Oq~ Oq ~' 

namely, the Born-Land6 equation, 

_ h2 0 ) Op~Op~ , +l 2 ~=0 (18) 
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which is obtainable from the Klein-Gordon equation essentially by replac- 
ing q by p and mc by I. This 1 should then represent a fundamental length 
of the field thereby giving rise to a notion of particle extension. 

The reciprocity idea (or q vs. p symmetry) was ultimately refined by 
Born (1949) as follows. First, one should normalize the position and 
momentum variables 

q ~ q / l  o, p ~ P/moc (19), 

where 1 o and m 0 represent a fundamental length and mass, respectively. 
The reciprocity principle would then require that the fundamental laws of 
physics be invariant under the reciprocity transformation p defined on 
normalized variables q, p by 

q ~ p  

p ~ -  q. (20) 

One justification for considering this transformation aside from 
aesthetic symmetry grounds is that it leaves Hamilton's equations invariant 
(p is canonical); that is, 

OH OH 
q= Op' P= Oq (21) 

are reciprocally invariant, or more geometrically that the symplectic struc- 
ture 

~2 = dp A dq (22) 

is p invariant (i.e., dp A dq ~ ( -  dq)A dp= dp A dq). Moreover, the canon- 
ical commutation relations (relativistic or nonrelativistic) are reciprocally 
invariant 

[q, p] =ih ~ [ p , -  q] =ih '~  [q, p] =ih (23) 

as also are the expressions (relativistic and nonrelativistic) for angular 
momentum. One interpretation of the reciprocity transformation is that it 
selects from the space of generalized phase space variables a set of "posi- 
tions" p and "momenta" p which are canonically conjugate and in involu- 
tion (the "positions" Poisson-commuting with one another and likewise for 
the "momenta"). Such variables, either the q's or the p's, naturally corre- 
spond in quantum mechanics to complete sets of commuting observables. 
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So the reciprocity principle can be regarded as the prequantum specification 
of "physical" positions and momenta from among the generalized position 
and momentum variables of phase space. 

In place of the Klein-Gordon operator P"Pu Born suggested the use of 
the so-called quantum metric operator 

D 2 = Q~'Q~, + ?~'P# (24) 

reciprocally symmetric with respect to Q" and P", where Q", P~ satisfy the 
normalized RCCR's (11) 

[Q~', e"] = - ioJog~'", [Q~', Q"] = 0 = [P~', e"]  (25) 

with r 0 = h/lomoC a dimensionless Planck's constant. The idea was to 
identify elementary particles with eigenfunctions of D 2 whose eigenvalues 
would somehow embody both the masses and radii of the allowed solutions. 
Besides the symmetrical form of D 2 as suggested by (16), one may argue 
that the Q2 term of D 2 is dominant on the cosmological scale where in 
relative terms energies are much smaller than lengths. Moreover, the p2 
term would be expected to prevail on the microscopic scale characteristic of 
high energy, and so there was hope that the quantum metric operator, 
embodying both the macro- and the microscopic might lead to a reconcilia- 
tion of quantum theory and relativity. 

These developments led directly to the nonlocal models of Yukawa 
(1950a, b; 1953) in which for two particles one would define 

X ~' = �89 + x ~ ) ,  r ~' - -  x f  - x ~  (26) 

as external and internal positions, respectively, and then postulate a free 
field equation of the form 

- h 2 o x - ~ x ,  + F  r~r~, or-~r~, Or~] ~b(X,r )=O (27) 

Thus began the study of bi- and multilocal models which led in particular 
(when F=r~'r~) to the relativistic harmonic oscillator models (see 
Takabayasi, 1979, for a review). 

Within the stochastic quantum theory, Prugove~ki (1981a, b) suggested 
the following stochastic analog of Born's eigenvalue equation: 

D2KB,A = ~o,AKB,A (28) 
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where D 2 is as in (24), (25) and KB. A is the propagator (14) or exciton 
transition amplitude between a ground state A and an excited state B. From 
the form of Kn.A, namely, 

KB.A(q',P';q,p) 

= fexp(--~A (q'-- rnn--~Aq )'k)~A(mAc(p'-k))~i3(u)8(k2-1)d4k 

(29) 

where ~B(u)= ~B(mAcu), U =p--(mB/mA)k, it follows that (Brooke and 
Prugove6ki, 1983) 

XB. A = - 2o~A(2+ n o +2n  + JB) (30) 

in the case of integral spin, and for even(+) and o d d ( - )  parity 

X • = - 2 ~ A ( 2 + n o + 2 n + 4 T - � 8 9  B,A (31) 

in the case of half-integral spin. Here ~0 A = h/14mAc, JB is the spin of the 
excited state B and n 0, n = 0,1,2 . . . .  are quantum numbers parametrizing 
the excited states. 

Interestingly, the connection between (27) and (28) is very close since 
equation (28) for the exciton transition amplitude eigenvalue equation is 
equivalent to 

Ou u, + u,u, (32) 

with u as in (29). For further discussion of this point see Brooke and Guz 
(1983a). 

4. RELATIVISTIC CANONICAL COMMUTATION 
RELATIONS AND GAUGE FREEDOM 

The relativistic canonical commutation relations (11), which in the 
relativistic situation lie at the heart of quantum mechanics, can be employed 
to introduce gauge freedom into the stochastic quantum theory. The RCCR's 
of course contain a "time-energy" commutation relation requiring the 
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existence of a time operator. For a discussion of such issues within the 
present context see Prugove~ki (1982). 

Use of the RCCR's to introduce gauge freedom was suggested by 
Caianiello (1980a, b) in a general program to unite geometry and quan- 
tum mechanics. Realizations of the RCCR's as first-order differential 
operators over phase space variables contained terms interpretable as 
connec t ion  coeff ic ients  arising f rom a metr ic  of  s ignature  
(1, - 1, - 1, - 1,1, - 1, - 1, - 1) on phase space, so that quantum mechanics 
could be described as a kind of curvature of phase space. 

The development described here can be found in Brooke and Prugove~ki 
(1982) and Brooke and Guz (1983b). 

We seek solutions of the RCCR's 

[Q~,,P,]=-itoo&,,, [Q~,,Q,]=O=[P~,,P,] (33) 

where to o = h/lomoC, in the following form: 

Q~,= - itoo( + + r~,( q, p) 1 (34) 

P~=i~o{ + + %(q, P)} (34) 

For scalar-valued functions ~ ,  ff,~, one finds (33) to be equivalent to 

0% a% i 
- - i  ap~,- dq; = toog~v (35a) 

a, v a% 
0 (35b) ap~' ape 

a% a% 
= 0 (35c) aq~' aq ~ 

The construction of the general solution proceeds by a simple differential 
geometric argument .  Let ~, denote the following differential 1-form (co- 
variant vector field) on the space of the q's and p's:  

X = % dp ~' + '~, dq ~ (36) 
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Taking the exterior derivative (curl), one has 

Opt, • dp~' A dp ~ + Opt, -~q~ ] dp~' A dq ~ 

Oq~, Oq ~ dq ~' A dq ~ (37) 

with the result that the RCCR's (33) are equivalent to 

i i 
d~. = - - -gt~,  dP ~ A dq" = - - -  dp~ A dq ~ (38) 

toO toO 

with raising and lowering of indices via g~", g~. Now (38) may be writ- 
ten as 

(39) 

which by the Poincar6 lemma (curlA~ = 0 =, A ~ = gradient) is locally equiv- 
alent to 

i i 
X = -~og~,,q~d p" + ~ dto (40) 

for some function to. Thus 

i ~ dto ) ,  i Oto 
= - -  - -  ( 4 1 )  "I'~, too aq~ 

and 

0 Oto 
Q. = - itoo-0--~p ~ + q~ -t 0p~, (42a) 

0 Oto 
P~ = ito 0 (42b) 

Oq" Oq ~' 

Note that the realization (4) of the nonrelativistic CCR's is obtainable from 
(42) by setting to = 0, and moreover the similarity between the standard 
minimal coupling substitution P~ ---. P~, - A. and (42b) with A. = Oto/Oq ~'. 
Of course from A~ = O~o/Oq~ one has F~v = OAv/Oq ~ - OA~,/Oq ~ -- O. We 
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see therefore that gauging the RCCR's by scalar-valued functions amounts 
to the usual wave function phase ambiguity associated with the introduction 
of electromagnetism in quantum mechanics. 

Before generalizing this construction to general gauges, we shall con- 
sider RCCR's for "internal" position and momentum. In stochastic quan- 
tum mechanics one regards Q~', P" as fluctuating about mean values q~', p~' 
which are observed in a measurement process according to the general 
principles of the theory. Therefore, one ought to consider as internal 
variables (with mean zero) 

~y '  = Q~, _ q~,, p~,  = p~,  _ p~,  (43) 

Using the realization (42) just found for Q", P" one may easily verify that 
0 ~', P~' satisfy the "internal" RCCR's, 

[0.,p.]=i,o0w, [0.,0.]=0=[P.,J ,.] (44) 

the only difference being a change of sign in the Q~', P~' relation. 
Hence we now seek solutions of the internal RCCR's (44) in the case of 

general gauges. This means we look for solutions of the form 

O.u = - i~Oo{ + + ~,( q, P)} (45a) 

P~,=i*Oo{ O--q-+'t'~(q,p)} Oq ~ (45b) 

where r ',I,~, take values in the Lie algebra of the gauge group U(1)x G INv 
[previously U(1) with Lie algebra all real multiples of i]. 

According to the general Yang-Mills prescription, one constructs the 
Lie algebra valued 1-form [as in (36)] 

= rb~ dp" + % dq ~ (46) 

but to cope with non-Abelian G ~yv one computes the exterior covariant 
derivative DX by 

DX = dh +�89 h] (47) 

the second nonlinear term in ~ involving Lie bracket and exterior product. 
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or because the components of DX are precisely those on the left of (48), the 
RCCR's  (44) are equivalent to 

i i 
Dh = -~og,~dp~' A dq'= o---odP. A dq ~' (49) 

The gauge potential h upon application of D yields F =  DX, the field 
strength 2-form. Moreover the right side of (49) is just 

fl ( i I )=  to---~dp~, A dq u" (50) 

where fl =dp~, Ix dq ~' is the symplectic form on phase space {(q, p)} and 
(iI) is a U(1) symmetry generator. This enables a restatement of the 
RCCR's  in the form 

"curvature of gauge bundle - symplectic structure" 

in much the same spirit as Caianiello's ideas. 
The reciprocity principle fits naturally into the setup as follows. By 

demanding that the gauge potential h be reciprocally invariant, 

0*(h)  = h (51) 

one obtains reciprocally invariant decompositions of h and F, namely, 

h = (h 6z~ + hEM)(/ / )+ h rNT 

F = ( F  oEoM + FEM)(iI)+ F INv 

Here h TM , the electromagnetic potential, is given by 

hEM = d60 TM 

(52) 

(53) 

(54) 

Op" --Oq ~ +[~" 'g '~]  =--o~ o g~ (48a) 

- -  + [r162 = 0  (48b) 
Op ~ Op" 

- -+[%,%]=0 (48c) 
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with (o TM a reciprocally invariant real-valued function leading to 

F TM = d~ TM = 0 (55) 

and ~OEOM is a reciprocally invariant 1-form whose exterior derivative 
yields the symplectic structure; for example, 

hOEOM = 1 
2~oog..( p~' aq ~ - q" ap. ) (56) 

FGEO M ---- dhGEOM = 1..1_~ (57)  
6O 0 

Finally we also have the pure uncoupled Yang-Mills equation 

F INT-- D}k INT-- 0 (58)  

Thus, the general reciprocally invariant realization of the RCCR's  is 

1( a,o) . 
0~, = - i(o0 + ~ - q~. + - -  - to~0w~i (59a) Opt' 

1 8(o P~,=i~o~-~+~(-p~,-~-~q~)+iO~oei'2 NT (59b) 

where ~ is a reciprocally invariant scalar function and ~XNT, ./.Ir~T define a 
gauge potential 1-form satisfying (58). Note also that reciprocal invariance 
of }~INT provides the conditions 

~INT( q, p ) = ,t, mr(  p,  _ q ), 't'2NT( -- q, -- p ) = -- q2 NT( q, p ) (60) 

sufficient to eliminate ~]NT from the description altogether, thereby allow- 
ing only as many gauge components as occur in standard quantum theory. 

5. AN EXCITON MASS FORM UL A 

A very brief review of the arguments leading to a mass formula for 
excitons obeying Born's quantum metric operator eigenvalue equation is 
given. For details, see Brooke and Guz (1982, 1983b), Brooke and Prugoveeki 
(1983). 

Born's internal quantum metric operator is 
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with Q ~ , / "  satisfying the internal RCCR's  (44) and % 
eigenvalue equation for the exciton transition amplitude Ks. A is 

b2Ks.A = ~s,AKs,A (62) 

where the eigenvalues ~s,A are as in (30), (31). 
Besides the external Klein-Gordon equation 

= h/IAmAC. The 

which serves to define the masses that are observable, one requires another 
equation which couples the internal and external variables. Motivated by 
the Yukawa-type equation (27), we consider 

iA ] j S,A=O (64) 

where P~'P~, represents the external part, x is a coupling constant, and 
( ls / l , t )  2 is a term suggested by reciprocal symmetry with P~'P~, which, by 
(63), corresponds to (ms/rnA)  2. 

Combining (62), (63), (64), and using (31), one finds 

( ~B /2 [  2 \  2 
- J (65) 

where a =  (2hCX)-a(lA/mAC 2) represents the slope [Jn as a function of 
(mBcZ) z ] of the trajectories implied by (65) for all values of n o, n = 0,1,2 . . . .  ; 
and where e takes the value 0 for natural parity states and the value 1 for 
unnatural parity states. 

A consistency condition in the even parity case (namely, that m s = 
mA, In = IA, JB = J/I when one sets n o = n -- 0) results in 

rnAc2 = ~/a-l(l+ T) (66) 

Finally, comparing the qualitative aspects of formula (65) with experi- 
mental values of known baryon masses, one is prompted to set l s = l A with 
the result that the final mass formula, obtainable from (65) (with l B = IA) 
and (66) is 

( m ~ c 2 ) 2 = o t - l ( n o + Z n +  J B - J / l + e ) + ( m , 4 c 2 )  2 (67) 
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Experimentally it is known in the baryon case that a --- I(GeV) - 2, and 
so if in equation (66) one sets JA - -1 /2  then the result is 

ml/2c 2 = 1154 MeV (68) 

and if JA = 3 /2  then 

m3/2c 2 ---- 1365 MeV (69) 

While there are no known spin- l /2  and spin-3/2 baryons of masses 
1154 and 1365 MeV, respectively, it is true however that the average masses 
of the SU(3) baryon octet: p (938.3) -n(939.6) -A(1115.6) -Z+ (1189.4)- 
Y,~ Y~- (1197.3) -  - ~  - -  (1321.3) and decuplet: 
A + § (1226) - A + (1227) - A~ - A- (1239) - Y,* + (1382) - Y,*~ - 
Y,* - (1387)- - ' ~  --'* - (1535)- ~2 - (1672) are very well predicted by 
(68) and (69), respectively. Taking this as evidence in support of the 
hypothesis that SU(3) is (at least an approximate) internal symmetry group 
of the theory, one is led to regard the values of m~/2c 2 a n d  m3/2 c2 as given 
by (66) as exact in an unbroken SU(3) theory but only approximate in a 
broken SU(3) theory. 

Since the mass formula (67) is a result of the unbroken SU(3) theory, 
one must decide how to interpret it in the broken theory. Because of the 
noncoupling (in this primitive model) with the electromagnetic field [equa- 
tions (55), (58)], one should ignore in (67) contributions due to charged 
species and so one should take for the allowed values of mac 2 (the ground 
state energies of the exciton families) the values of N(939), Y~(1193), 
A(ll15),  and -"(1317) in the sp in- l /2  case. And in the spin-3/2 situation, 
one should use for mac 2 the values of A(1232), Y.*(1385), -*(1530), 
~2(1672). Thus, using these as the ground state masses of the broken SU(3) 
mass formula (67) one should obtain a mass spectrum for even and for odd 
parity trajectories. This set of predicted broken-SU(3) exciton masses is in 
very good numerical agreement with the great majority of the known 
low-lying baryons. 

A similar formula in the case of integral spin does not seem to fit 
experiment owing to the fact that the experimental meson trajectories are 
not parallel even within the tolerances allowed by experimental error. 
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